Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Environ Pollut ; 266(Pt 3): 115175, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32683088

RESUMO

Detailed information on in-harbour shipping contribution to size segregated particles in coastal cities are scarce, especially in the busy Mediterranean basin. This poses issues for human exposure and air quality in urban harbour agglomerates, where only criteria pollutants (i.e. PM10 and/or PM2.5) are usually monitored. In this work, particle number and mass size distributions, in a large size range (0.01-31 µm), were obtained in two coastal cities of northern Adriatic Sea: Venice (Italy) and Rijeka (Croatia). Three size ranges were investigated: nanoparticles (diameter D < 0.25 µm); fine particles (0.25 1 µm). Absolute concentrations were larger in Venice for all size ranges showing, using analysis of daily trends, a large influence of local meteorology and boundary-layer dynamics. Contribution of road transport was larger (in relative terms) in Rijeka compared to Venice. The highest contributions of shipping were in Venice, mainly because of the larger ship traffic. Maximum impact was on nanoparticles 7.4% (Venice) and 1.8% (Rijeka), the minimum was on fine range 1.9% (Venice) and <0.2% (Rijeka) and intermediate values were found in the coarse fraction 1.8% (Venice) and 0.5% (Rijeka). Contribution of shipping to mass concentration was not distinguishable from uncertainty in Rijeka (<0.2% for PM1, PM2.5, and PM10) and was about 2% in Venice. Relative contributions as function of particles size show remarkable similitudes: a maximum for nanoparticles, a quick decrease and a successive secondary maximum (2-3 times lower than the first) in the fine range. For larger diameters, the relative contributions reach a minimum at 1-1.5 µm and there is a successive increase in the coarse range. Size distributions showed a not negligible contribution of harbour emissions to nanoparticle and fine particle number concentrations, compared to PM2.5 or PM10, indicating them as a better metric to monitor shipping impacts compared to mass concentrations (PM2.5 or PM10).


Assuntos
Poluentes Atmosféricos/análise , Navios , Cidades , Croácia , Monitoramento Ambiental , Humanos , Itália , Tamanho da Partícula , Material Particulado/análise
4.
Sci Total Environ ; 717: 137220, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092819

RESUMO

Although biogas production can have some benefits, there is a research gap on potential influence of biogas plant emissions on local air quality, thus an accurate and comprehensive evaluation of impacts of this technology is needed. This study deals with this issue by means of a characterisation of air pollution near an industrial area including a biogas production (from biomass) and combustion plant located in South Italy. The methodology consists in advanced statistical analysis on concentration of gaseous pollutants, particles concentration and size distribution in number and mass, and PM2.5 chemical composition. High-temporal resolution measurements, supported by ancillary meteorological parameters, and source apportionment of PM2.5 using Positive Matrix Factorization (PMF) receptor model, are performed. The integrated approach provides the emissive picture consisting in different anthropogenic sources (i.e. traffic, biomass burning, and industrial facilities) with particular focus on biogas plant emissions. Results showed that CO and nitrogen oxides were influenced by vehicular traffic and biomass combustion, however, a contribution of the plant to NO was observed. SO2 was influenced mainly by transport from the industrial zone, but a second local contribution compatible with the emissions of the biogas plant was detected. Number particle concentrations were analysed in four size ranges: nanoparticles (D < 0.05 µm), ultrafine particles (D < 0.3 µm), accumulation (0.3 < D < 1 µm) and coarse particles (D > 1 µm). Nanoparticles and ultrafine particles were mainly influenced by vehicular traffic and biomass burning, instead, a contribution of the plant was individuated in the accumulation mode. PMF5 identified the contribution of six sources: crustal (14.7% ± 2.1% of measured PM2.5); marine aerosol (aged) (12.9% ± 2.3%); biomass burning (32.8% ± 1.4%); secondary sulphate (19.7% ± 2.4%); primary industrial emissions (5.4% ± 2.3%); traffic and secondary nitrate (17.0% ± 3.9%). The plant is likely to contribute to both sources, the industrial and the traffic plus secondary nitrate.


Assuntos
Poluição do Ar , Poluentes Atmosféricos , Biocombustíveis , Monitoramento Ambiental , Itália , Material Particulado , Emissões de Veículos
5.
Sci Total Environ ; 612: 202-213, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28850839

RESUMO

Comparison of fine and coarse fractions in terms of sources and dynamics is scarce in southeast Mediterranean countries; differences are relevant because of the importance of natural sources like sea spray and Saharan dust advection, because most of the monitoring networks are limited to PM10. In this work, the main seasonal variabilities of sources and processes involving fine and coarse PM (particulate matter) were studied at the Environmental-Climate Observatory of Lecce (Southern Italy). Simultaneous PM2.5 and PM10 samples were collected between July 2013 and July 2014 and chemically analysed to determine concentrations of several species: OC (organic carbon) and EC (elemental carbon) via thermo-optical analysis, 9 major ions via IC, and 23 metals via ICP-MS. Data was processed through mass closure analysis and Positive Matrix Factorization (PMF) receptor model characterizing seasonal variabilities of nine sources contributions. Organic and inorganic secondary aerosol accounts for 43% of PM2.5 and 12% of PM2.5-10 with small seasonal changes. SIA (secondary inorganic aerosol) seasonal pattern is opposite to that of SOC (secondary organic carbon). SOC is larger during the cold period, sulphate (the major contributor to SIA) is larger during summer. Two forms of nitrate were identified: NaNO3, correlated with chloride depletion and aging of sea-spray, mainly present in PM2.5-10; NH4NO3 more abundant in PM2.5. Biomass burning is a relevant source with larger contribution during autumn and winter because of the influence of domestic heating, however, is not negligible in spring and summer, because of the contributions of fires and agricultural practices. Mass closure analysis and PMF results identify two soil sources: crustal associated to long range transport and carbonates associated to local resuspended dust. Both sources contributes to the coarse fraction and have different dynamics with crustal source contributing mainly in high winds from SE conditions and carbonates during high winds from North direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...